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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-452

MODULATED ENTRY

By Frederick C. Grant

SUMMARY

The technique of modulation, or variable coefficients, is discussed

and the analytical formulation is reviewed. Representative numerical

results of the use of modulation are shown for the lifting and nonlifting

cases. These results include the effects of modulation on peak accel-

eration, entry corridor, and heat absorption. Results are given for

entry at satellite speed and escape speed. The indications are that

coefficient modulation on a vehicle with good lifting capability offers

the possibility of sizable loading reductions or, alternatively, wider

corridors; thus, steep entries become practical from the loading stand-

point. The amount of steepness depends on the acceptable heating pen-

alty. The price of sizable fractions of the possible gains does not

appear to be excessive.

INTRODUCTION

For low entry angles, provision of a small L/D is helpful in

the reduction of peak loadings. At the higher entry angles, defined

arbitrarily as those greater than 6° , even high L/D will not keep

the peak loadings below some nominal limit such as log. For super-

circular entry a g limitation defines a corridor width. To stay within

a g limit at steep entry angles, the technique of modulation, or vari-

able coefficients, must be introduced. In this paper numerical results

will be shown only for entry at satellite and escape speed; however,

the indicated trends are independent of the velocity.

In entry from escape speed, as in lunar return, the ability to

withstand steep entry provides a margin for error in the guidance prob-

lem; however, at satellite speeds large retro-rockets are needed to

achieve steep entry angles. From a practical standpoint there are

certain military purposes, emergency conditions, and abort conditions

for which it is possible that steep entry will be required at satellite

speeds.
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SYMBOLS

drag coefficient

lift coefficient

resultant-force coefficient

drag

acceleration due to gravity

altitude

lift

total heat absorbed

ballistic modulation ratio

lifting modulation ratio

radius from center of earth to atmospheric entry point

velocity

horizontal distance

angle of attack

atmospheric scale height, dh
d log e O

flight-path angle with local horizo_tal_ positive up

minimum acceleration index

parameter (ref. l)

air density
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Subscripts:

MAX

MIN

Mod

o

Opt

pe

Unmod

i

2

Bar over symbol indicates values for

maximum

minimum

modulated

initial conditions

optimum

perigee

unmodulated

start of modulation

end of modulation

A dot over a symbol indicates a derivative with respect to time.

(L/D) MAx •

DISCUSSION

The modulation principle is illustrated in figure i which shows a

loading history with and without modulation for a lifting vehicle. The

resultant aerodynamic force in units of the vehicle weight is plotted

against the corresponding times. In the upper right corner, the corre-

sponding trajectories are sketched. For the unmodulated case, the

loading rises to a sharp peak just before the bottom of the pull-up at

which point the curve has been ended (corresponds to the upper trajectory

in the sketch). For the modulated case, at some point in the entry the

loading is not allowed to increase further and is held constant by con-

tinuous reduction of the resultant-force coefficient (corresponds to the

lower trajectory in the sketch). Deeper penetrations of the atmosphere

always occur in modulated pull-ups. If the proper point for start of

the modulation has been selected, the vehicle will have nearly zero

lift coefficient as it levels out. If the modulation is started too

soon, the vehicle will not have leveled out sufficiently as the lift

coefficient approaches zero. Higher loadings will be experienced sub-

sequently than were maintained during the modulation period. For late
starts of the modulation and consequent higher loading levels, the lift

coefficient will not have approached zero at the bottom of the pull-up

and the full capability of the vehicle will not be realized. For the
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case shown, the shaded area next to the unmodulated curve may be loosely

regarded as an impulse which is shifted to later times and lower loading

levels for the modulated case. For precision, components of the impulse

must be considered. The basic idea, however, i_ to replace a large force

acting for a short time by a smaller force acti]ig for a longer time to

make essentially the same change in velocity. !!he modulation scheme

indicated in figure i is that used in references i and 2.

The following simple relation governs the air loading:

Resultant force _ CRPV 2
Weight

As indicated in figure I the rise in pV 2

the modulation period by the decrease in

be distinguished:

duril_g entry is combated during

CR. The following two cases can

Ballistic:

CR = CD

Lifting:

CR = I_C_D2+ CL 2

In the ballistic case the drag coefficient is reduced during modulation.

In the more complicated lifting case both lift _nd drag coefficients are

changed simultaneously according to whatever fur ctional relation exists
between them.

The nature of the difference between the t_o cases can be visualized

more concretely in terms of force polars. Forc_ polars for the two cases

are sketched in figure 2 along with the physical means necessary to

attain the polars. In the ballistic case an axJsymmetric vehicle is

visualized as decreasing its frontal area from s large value to a small

value. The corresponding polar is part of the CD axis. In the lifting

case a winged vehicle is visualized as changing attitude from an angle of

attack of 90 ° to an angle of attack of 0° while the force coefficients

trace out a loop in the CD, CL plane. This is the extreme range of

lift modulation; the optimum range lies, as will be shown, between maxi-

mum lift coefficient and minimum drag coefficiert.

In the ballistic case a geometry modulation is needed; in the lifting

case an attitude modulation is needed. Other cases can be imagined in

which both geometry and attitude modulation occur simultaneously and thus

L

i

0

4

5



5

L

I

0

4

9

trace out paths intermediate to the two shown. It can be shown (refs. 3

and 4) that the g-alleviation capability for the lifting case depends

strongly on a single par_neter, the maximum lift coefficient in units

of the minimum drag coefficient. For the ballistic case, the allevia-

tion depends on the ratio of maximum drag coefficient to minimum drag

coefficient. (See ref. I.) For unit minimum drag coefficient the

parameters appropriate to the two cases are marked on the polars as rB,

the ballistic modulation ratio, and rL_ the lifting modulation ratio.

In the analysis of reference 2, the modulation was effectively restricted

to the portion of the polar on the low-drag side of maximum lift-drag
ratio (between the two lowest dots). This restriction leads to an under-

estimation of the possible g alleviation and an overestimation of the

heat load associated with a given g level.

ANALYTICAL FORMULATION

Isolation of the two modulation parameters is made possible by the

separation of the modulation problem into two limiting cases with appro-

priate analytic assumptions. (See fig. 3.) Formulas derived with these

assumptions are presented in appendix A. In the ballistic case varia-

tions in the flight-path angle are presumed to be unimportant whereas

the velocity changes are considered to be significant. In the lifting

case the complementary assumptions are made; that is, changes in velocity

are ignored whereas changes in flight-path angle are considered to be

important. In physical terms, the assumptions correspond to separation

of the two possible operations on the velocity vector, changes of magni-

tude and changes of direction. On course, these assumptions do not apply

to the portions of the trajectories beyond peak g which are indicated in

figure 3 as dashed lines.

The assumption of constant velocity in the lifting case is conserva-

tive in the sense that it leads to am underestimation of the g allevia-

tion. Neglect of the actual velocity decrease means that in the real

lifting case higher lift coefficients can be used at the same altitudes

for the same loading limit. A lower loading limit than is indicated by

the analysis is thus possible in the real case.

The ballistic case has been analyzed in reference i and the princi-

pal result is indicated in figure 4. Plotted vertically is the peak

resultant force in units of the peak resultant force for no modulation.

The sole parameter on which the g alleviation depends is the modulation

ratio rB, the ratio of maximum drag to minimum drag. A region of

rapid initial gains is followed by one in which diminishing returns have

set in. The alleviation ratio always decreases but always at a slower

rate. The ballistic case is completely solved in terms of the ballistic



modulation ratio. In the lifting case, a different modulation ratio,
maximumlift coefficient to minimumdrag coefficient, plays the leading
role.

The analysis of the lifting case (refs. 2 to 4) is complicated by
the simultaneous appearance of lift and drag coefficients. The principal
result of the analysis is shownin figure 5. The vehicle is presumedto
enter the atmosphere at somespecified lift and drag coefficients indi-
cated as point i on the schematic polar at the upper left. At some
point in the trajectory, shownat the right, the resultant force is held
constant and the coefficients are varied through the bottom of the
pull-up (point 2) and trace a portion of the drag polar from points i
to 2. For this type of entry, the loading that is held during the modu-
lation along arc 1,2 is found to vary inversely with a function F.
(See fig. 5.) The integral term of this function is the more important
and is a simple line integral along the polar. Since the peak loading
is minimumfor maximum F, it is of interest to know the proper choice
of points i and 2 which yields maximum F for any given polar. By
differentiation of the F function, the maximumvalue of F is found
to occur for modulation between maximumlift coefficient and minimum
drag coefficient.

The optimum polar with which to connect specified maximumlift and
minimumdrag points is indicated in figure 6 and is derived as follows:
Since the endpoints are specified, it is a question of maximizing the
integral term (fig. 6) of the function F. Einee the integration is with
respect to CR, the largest possible CL at every CR value is required.
Lines of constant CR are circles centered on the origin, one of which
is indicated in the figure. The dashed curve (fig. 6) represents a
realistic polar between points i and 2. For maximum CL at a given
CR, the dashed curve must be pushed as far clockwise as possible along
the lines of constant CR. This movementforces the dashed curve into
coincidence with the right-angle polar between points i and 2 (drawn as
a solid line). For the right-angle polar, [ is a simple logarithmic
function only of the ratio of maximumlift ccefficient to minimumdrag
coefficient. The values of F for real polsrs will be somewhatless
than the values for right-angle polars between the samemaximumlift and
minimumdrag points. However, the previousl_ mentioned conservative
nature of the constant-velocity assumption leads in many cases to better
loading estimates when the right-angle polar is substituted for the
actual polar.

For a family of vehicles with Newtonian drag polars, the results of
the lifting analysis are shownin figure 7. The base loading is, in
this case, that experienced in entry at the corner of the optimumpolar.
(See appendix B.) Although the analysis yields results in terms of the
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lift modulation parameter, in this figure the corresponding (L/D)MA X

of the vehicle has been used. Since vehicles of increasing (L/D)MA X

have increasing lift-modulation parameters, the trend of the curves is

the same on either basis. As in the ballistic case, diminishing returns

appear at the higher parameter valuesj but appreciable gains are evident

for (L/D)MA X values as low as unity. The ratios plotted in figure 7

are independent of the velocity and entry angle to the order of approxi-

mation of the analysis.

NUMERICAL RESULTS

Figure 8 shows some concrete examples of the acceleration levels

to be expected for steep entry at satellite speed with and without modu-

lation. (See appendix A.) The entry-angle range is between 6° and 12 °.

On the left are shown the unmodulated g levels for the ballistic case,

L/D = O, and for a pure lifting case, L/D = _. Curves for the higher

finite L/D values cluster in the neighborhood of the L/D = _ curve.
With a nominal limit of 10g only the lifting vehicle at the low end of

the range is acceptable. In the modulated case it is necessary to put

limitations on the modulation capability. For example, in the ballistic

case, an indefinitely large modulation capability means indefinitely

low peak loadings. A vehicle which had and used such a capability would

strike the earth just as if the earth had no atmosphere. Similar con-

siderations preclude an infinite modulation ratio in the lifting case.

For the ballistic case, then, a 50-to-i drag-modulation capability was

assumed as a representative high value. For the lifting case an L/D

of 2 was specified as representing a high lift capability. On the basis

of 10g being permissible, the ballistic vehicle is acceptable through

most of the range and the lifting vehicle is satisfactory through the

entire range. For escape speed the absolute values of the loadings are

different, but the relative magnitudes are about the same.

Until now nothing has been said about the effect of modulation on

entry corridor width or on the heating penalties associated with modu-

lated entry. Figure 9 deals with these considerations. (See appendix C.)

The vertical scale is Chapman's entry corridor width in miles for a

10g entry at escape velocity; the horizontal scale is the (L/D)MAX of

a family of vehicles with Newtonian drag polars. Two modes of operation

are indicated by solid lines: full modulation from maximum lift coeffi-
cient and no modulation from maximum lift-drag ratio. Rather spectacular

gains in corridor width are evident for the higher L/D, at least in

terms of the L/D = 0 value which is about 7 miles. Some idea of the
relative heating penalties is indicated for a vehicle with the high L/D

of 2.8. This represents a difficult case. Vehicles of lower (L/D)MA X

will have easier heating problems.



8

Trajectories corresponding to the four m)des of operation of the

high L/D vehicle are indicated in figure 10. The dashed portions of

the trajectories indicate the portions corres[oonding to the modulation

period. Note that all the pull-ups are completed within a minute. The

reference total heat is that absorbed down to the bottom of the pull-up

for entry at maximum lift coefficient without modulation. Figure lO

shows this to be the highest altitude lowest heating pull-up and fig-

ure 9 shows it to have the narrowest corridor. Entry at (L/D)MAX with-

out modulation yields a wider corridor but 2.3 times as much heat absorp-

tion. Passing to full modulation yields the widest corridor, the deepest

penetration, and 6.1 times as much heat absorbed. The remaining trajec-

tory corresponds to partial utilization of the vehicle capability. For

this case more than lO0 miles of corridor can be maintained for 1.7 times

as much heat absorption as in the narrow-corridor low-heating pull-up at

maximum lift coefficient without modulation. In terms of weight, this

means about 70 percent more ablative material is required. In general,

the question comes down to a trade-off betweeu corridor width and heating

penalties and can be settled only by a systems study of the mission. Since
modulation from nm_imum lift coefficient is more favorable from both the

heat absorption and loading standpoints, it i_ merely a question of how
far to modulate.

Results for drag modulation on a ballistic vehicle are not shown in

figure 9 since the gains are small. At rB = 21, calculations have shown

the ballistic vehicle to gain in corridor width from 7 to 50 miles while

heat absorption rises about 60 percent. The _it of heat absorption is,

of course, different from that used in the lifting example just discussed.

In figure i0, the pea/< heating rates in the pull-ups range from

about 500 Btu/ft2-sec in the pull-up at (CL)_G ( without modulation

to about 2,800 Btu/ft2-sec in the pull-up wit_ full modulation. All

the heating values shown in figures 9 and l0 _efer to the stagnation

point of a 1-foot-radius sphere at which poin_ the heating rate is

presumed to vary as _1/2V3"15.
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CONCLUDING P_

In conclusion, it may be said that coefficient modulation on a

vehicle with good lifting capability offers the possibility of sizable

loading reductions or, alternatively, wider ccrridors so that steep

entries become practical from the loading standpoint. The amount of

steepness depends on the heating penalty that is acceptable; however,

the price of sizable fractions of the total possible gains does not

appear to be excessive.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Field, Va., April ll, 1960.
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APPENDIX A

FORMULAS DERIVED BY USE OF ANALYTIC ASSUMPTIONS
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The analytic assumptions indicated in figure 3 have allowed a number
1

of simple peak loading formulas to be derived. These formulas are:

Unmodulated ballistic (ref. 5):

Resultant force = sin 7o K

Weight e

Unmodulated lifting (ref. 2):

Resultant force = 2(1 - cos 7o)_i
Weight

Modulated ballistic (ref. I):

Resultant force = sin 7o hel-kK
Weight e

l_ 1

rB : ke 7 (0 __ k _ l)

Modulated lifting (ref. 5):

Resultant force 2(1 - cos 7o)K

Weight P

r = sinh-lrL (for ideal polars)

(Ala)

(A_b)

The additional assumption that the net force due to gravity and coordinate

acceleration is a small fraction of the aerodynamic force is implied by

these formulas. Details are given in the indicated references.

iDifferences of notation from that of the references have been

introduced. In the case of reference 2 a factor accounting for velocity

decrement has been suppressed to conform with the constant-velocity

assumption.



i0

The quantity K is the constant acceleration in g units required
to absorb the initial kinetic energy during s_raight line motion over a
length equal to the scale height 8-i; that is,

K = V°2

The formulas (AI) above have been used to plot figure 8. In fig-
ure 8 the parameter values assumedare: Vo = 25,900 fps; 8-1 = 23,300 ft;
and g = 32.2 fps. L
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DETAILS OF CALCULATIONS OF ALLEVIATION FUNCTION

IN LIFTING CASE
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For attitude modulation on a vehicle with an ideal polar (fig. 6)

the minimum peak loading has been shown to be (ref. 3)

Vo 2 2(1 - cos Yo)

Resultant _ -i
forc_

Weight ]Mod 2g_ F0pt

(Bla)

where

F0p t = sinh-lrL ( lb)

The corresponding peak loading for entry without modulation (at the

corner of the ideal polar) is (from appendix A)

Resultan______tforce_

Weight ]Unmod

Vo2 2(1 - cos 7o)

2g_ -I rL

i + rL2

(B2)

The alleviation ratio shown in figure 7 is the quotient of equations (BI)

and (B2); that is,

Modulated resultant force

Unmodulated resultant force

rL

_I + rL 2 sinh-lrL

(B3)

The Newtonian drag polars of reference 6 have been used to provide the

relation between r L and (L/D)MAX which is implicit in figure 7.

These polars may be written in the form

=C i

CD DMAXI_B + (i-r_)Sin3_]

(B4a)
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The angle for maximumlift coefficient i_ tan-l_ and that for
maximumlift-drag ratio _ is defined by the relation

L) = i + 3 cos 2_ (B4b)
D MAX 3 sin 2_

The corresponding ratio rB of maximum drag to minimum drag on the polar

is found from the relation

2 _ 3 sin _ - sin 5_ (B4c)

rB - i i + 3 cos 2_

The relation between rB and rL for the po2ars (B4a) is

rL - 2_(r B - l)
(B4d)

Eliminating rB between equations (B4c) and (B4d) yields rL as a

function of _ and hence through equation (B+b), of (L/D)MA X.

Although figure 7 shows a correct trend, proper use of the numerical

values requires that the basis of the figure oe clearly understood. The

F values used in figure 7 are those corresponding to optimum polars

between the maximum lift and minimum drag points of the polars given in

eq. (B4a). Also, the unmodulated peak loading (the unit loading) is

that experienced in an entry for which L/D = rL. Thus, at the higher

L/D values, the reference loading is essentially that experienced with-

out modulation at infinite L/D. The ratios of figure 7 can be scaled

to whatever values of F and "(Resultant force] are appropriate
\ Weight /Unmod

by the relations

Resultant force] _

Weight JMod F

Resultant force] _ _Weight /Unmod

/D, 21

(BS)
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DETAILS OF CALCULATIONS OF CORRIDOR WIDTH
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The curves and points of figure 9 correspond either to numerical

integrations or to formulas such as those used to construct figure 8.

To avoid confusion, the construction of figure 9 requires explanation.

The conic perigee point for the undershot boundary was determined
in all cases by the relation:

-r e(r° P )undershoot r° sin2(7°)MAX (Cl)

which holds for parabolic orbits. The values of (7O)MA X correspondin_

to a given load limit (10g in fig. 9) were determined either by the

formulas of appendix A or by numerical integrations.

The overshoot boundary was defined as the altitude at which CLMLhX

in inverted flight yields i g unit of aerodynamic lift. This definition

is consistent with the assumption of constant velocity. The actual over-

shoot boundary is somewhat higher.

The values of stagnation-point relative heat shown in figure 9 and

the corresponding corridor widths were all obtained by numerical integra-

tion in the ARDC atmosphere (ref. 7) for the L/D = 2.8 vehicle of refer-

ences 3 and 4. For this vehicle (ro - rpe)overshoot _ (0.10)106 feet.

The initial conditions were Vo = 36,500 feet per second at

h o = 350,000 feet. The curve marked unmodulated was faired to agree

with the machine computations for this vehicle. Results from references 6

and 8 lie slightly below this curve. The trajectories of figure i0 were

obtained in the same numerical integration which yielded the heating
values.

The curve marked "full modulation" is based on the alleviation func-

tion indicated in figure 7 and explained in appendix B.
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ANALYTIC ASSUMPTIONS

_,,_,S LIFTING CASE

9=-,O;t _ =0

PEAK ACCELERATION

_BALLISTIC CASE %\

7._o; 9_o \ \

t_
I

I.-'
o

Figure 3

BALLISTIC-CASE GEOMETRY MODULATION

MODULATED
RESULTANT FORCE

UNMOOULATED
RESULTANT FORCE

O

.5

i

I

I I I I

rB=

I
5

CD, MAY

CO, MIN

I 1
IO

Figure 4



3N 17

LIFTING-CASE ANALYTICAL RESULTS
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LIFTING-CASE ATTITUDE MODULATION
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